skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hawkins, Charles"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Plant Metabolic Network (PMN) is a free online database of plant metabolism available at https://plantcyc.org. The latest release, PMN 16, provides metabolic databases representing >1200 metabolic pathways, 1.3 million enzymes, >8000 metabolites, >10 000 reactions and >15 000 citations for 155 plant and green algal genomes, as well as a pan-plant reference database called PlantCyc. This release contains 29 additional genomes compared with PMN 15, including species listed by the African Orphan Crop Consortium and nonflowering plant species. Furthermore, 52 new enzymes with experimentally supported function information have been included in this release. The single-species databases contain a combination of experimental information from the literature and computationally predicted information obtained through PMN’s database generation pipeline for a single species, while PlantCyc contains only experimental information but for any species within Viridiplantae. PMN is a comprehensive resource for querying, visualizing, analyzing and interpreting omics data with metabolic knowledge. It also serves as a useful and interactive tool for teaching plant metabolism. 
    more » « less
  2. Abstract River managers strive to use the best available science to sustain biodiversity and ecosystem function. To achieve this goal requires consideration of processes at different scales. Metacommunity theory describes how multiple species from different communities potentially interact with local‐scale environmental drivers to influence population dynamics and community structure. However, this body of knowledge has only rarely been used to inform management practices for river ecosystems. In this article, we present a conceptual model outlining how the metacommunity processes of local niche sorting and dispersal can influence the outcomes of management interventions and provide a series of specific recommendations for applying these ideas as well as research needs. In all cases, we identify situations where traditional approaches to riverine management could be enhanced by incorporating an understanding of metacommunity dynamics. A common theme is developing guidelines for assessing the metacommunity context of a site or region, evaluating how that context may affect the desired outcome, and incorporating that understanding into the planning process and methods used. To maximize the effectiveness of management activities, scientists, and resource managers should update the toolbox of approaches to riverine management to reflect theoretical advances in metacommunity ecology. This article is categorized under:Water and Life > Nature of Freshwater EcosystemsWater and Life > Conservation, Management, and AwarenessWater and Life > Methods 
    more » « less
  3. Abstract A tenet of ecology is that temporal variability in ecological structure and processes tends to decrease with increasing spatial scales (from locales to regions) and levels of biological organization (from populations to communities). However, patterns in temporal variability across trophic levels and the mechanisms that produce them remain poorly understood. Here we analyzed the abundance time series of spatially structured communities (i.e., metacommunities) spanning basal resources to top predators from 355 freshwater sites across three continents. Specifically, we used a hierarchical partitioning method to disentangle the propagation of temporal variability in abundance across spatial scales and trophic levels. We then used structural equation modeling to determine if the strength and direction of relationships between temporal variability, synchrony, biodiversity, and environmental and spatial settings depended on trophic level and spatial scale. We found that temporal variability in abundance decreased from producers to tertiary consumers but did so mainly at the local scale. Species population synchrony within sites increased with trophic level, whereas synchrony among communities decreased. At the local scale, temporal variability in precipitation and species diversity were associated with population variability (linear partial coefficient, β = 0.23) and population synchrony (β = −0.39) similarly across trophic levels, respectively. At the regional scale, community synchrony was not related to climatic or spatial predictors, but the strength of relationships between metacommunity variability and community synchrony decreased systematically from top predators (β = 0.73) to secondary consumers (β = 0.54), to primary consumers (β = 0.30) to producers (β = 0). Our results suggest that mobile predators may often stabilize metacommunities by buffering variability that originates at the base of food webs. This finding illustrates that the trophic structure of metacommunities, which integrates variation in organismal body size and its correlates, should be considered when investigating ecological stability in natural systems. More broadly, our work advances the notion that temporal stability is an emergent property of ecosystems that may be threatened in complex ways by biodiversity loss and habitat fragmentation. 
    more » « less